Small Business Innovation Research/Small Business Tech Transfer

Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion, Phase I



Completed Technology Project (2011 - 2011)

Project Introduction

Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space science, communications, and surveillance. However, the operational flexibility of these vehicles is limited by the performance of the propulsion system. In gas turbine systems low temperatures and pressures at the combustor inlet are of concern for combustion stability and efficiency at high altitudes. The overall objective of the proposed work is to assess the feasibility of developing a high performance airbreathing combustor for hydrogen-fueled very high altitude aircraft by promoting stable combustion using thermally stable catalytic reactor technology. Our combustor concept baselines the use of strontium-substituted hexaaluminate catalyst supports, which are resilient to temperatures greater than 1500 K. In Phase I an active catalyst that provides high reactivity with hydrogen at representative conditions will be identified through laboratory testing. An empirical model of catalyst reactivity will be developed and integrated with a reactor model to produce a conceptual design of a full scale combustor for a defined very high altitude gas turbine system. The catalytic rector that will be developed through this effort represents a new, enabling technology that will dramatically increase the flexibility of aerospace vehicles.

Primary U.S. Work Locations and Key Partners

Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2
Target Destinations	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Supporting	NASA	Hampton,
	Organization	Center	Virginia

Primary U.S. Work Locations	
Massachusetts	Virginia

Project Transitions

February 2011: Project Start

September 2011: Closed out

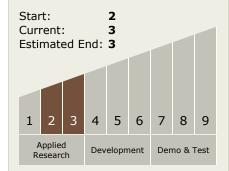
Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138539)

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

James Sisco

Technology Maturity (TRL)

Technology Areas

Primary:

- TX01 Propulsion Systems
 □ TX01.3 Aero Propulsion
 □ TX01.3.1 Integrated
 Systems and Ancillary
 Technologies
- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

